0 like 0 dislike
There are 5 red balls, 4 blue balls, 6 yellow balls and 10 green balls in a box,

i need the answer :( ​

0 like 0 dislike
Here we go ~

According to given information there are :

- 5 red balls

- 4 blue balls

- 6 yellow balls

- 10 green balls

1. what is the probability that the ball chosen is red ?

-

$$\qquad \sf \dashrightarrow \: p(red) = \dfrac{total \: red \: balls}{total \: balls}$$

$$\qquad \sf \dashrightarrow \: p(red) = \dfrac{5}{5 + 4 + 6 + 10}$$

$$\qquad \sf \dashrightarrow \: p(red) = \dfrac{5}{25}$$

$$\qquad \sf \dashrightarrow \: p(red) = \dfrac{1}{5}$$

2. what is the probability that the ball chosen is blue ?

$$\qquad \sf \dashrightarrow \: p(blue) = \dfrac{total \: blue \: balls}{total \: balls}$$

$$\qquad \sf \dashrightarrow \: p(blue) = \dfrac{4}{5 + 4 + 6 + 10}$$

$$\qquad \sf \dashrightarrow \: p(blue) = \dfrac{4}{25}$$

3. what is the probability that the ball chosen is yellow ?

$$\qquad \sf \dashrightarrow \: p(yellow) = \dfrac{total \: yellow\: balls}{total \: balls}$$

$$\qquad \sf \dashrightarrow \: p(yellow) = \dfrac{6}{5 + 4 + 6 + 10}$$

$$\qquad \sf \dashrightarrow \: p(yellow) = \dfrac{6}{25}$$

4. what is the probability that the ball chosen is green ?

$$\qquad \sf \dashrightarrow \: p(green) = \dfrac{total \: green\: balls}{total \: balls}$$

$$\qquad \sf \dashrightarrow \: p(green) = \dfrac{10}{5 + 4 + 6 + 10}$$

$$\qquad \sf \dashrightarrow \: p(green) = \dfrac{10}{25}$$

$$\qquad \sf \dashrightarrow \: p(green) = \dfrac{2}{5}$$

5. what is the probability that the ball chosen is not green ?

$$\qquad \sf \dashrightarrow \: p(not \: green) = \dfrac{total \: non \: green\: balls}{total \: balls}$$

$$\qquad \sf \dashrightarrow \: p(not \: green) = \dfrac{5 + 4 + 6}{5 + 4 + 6 + 10}$$

$$\qquad \sf \dashrightarrow \: p(not \: green) = \dfrac{15}{25}$$

$$\qquad \sf \dashrightarrow \: p(not \: green) = \dfrac{3}{5}$$
by