0 like 0 dislike
Rewrite the following expression using the properties of loy
log2 z + 2 log2 x+ 4 log9 y + 12 log9 x - 2 log2 y
by

2 Answers

0 like 0 dislike
[tex]\log_2\dfrac{x^2z}{y^2}+\log_9x^{12}y^4[/tex]

Step-by-step explanation:

Log laws

[tex]\textsf{Product law}: \quad \log_axy=\log_ax + \log_ay[/tex]

[tex]\textsf{Quotient law}: \quad \log_a\frac{x}{y}=\log_ax - \log_ay[/tex]

[tex]\textsf{Power law}: \quad \log_ax^n=n\log_ax[/tex]

Given expression:

[tex]\log_2z+2\log_2x+4\log_9y+12\log_9x-2\log_2y[/tex]

Group terms with same log base:

[tex]\implies \log_2z+2\log_2x-2\log_2y+4\log_9y+12\log_9x[/tex]

Apply the power law:

[tex]\implies \log_2z+\log_2x^2-\log_2y^2+\log_9y^4+\log_9x^{12}[/tex]

Apply the product law:

[tex]\implies \log_2x^2z-\log_2y^2+\log_9x^{12}y^4[/tex]

Apply the quotient law:

[tex]\implies \log_2\dfrac{x^2z}{y^2}+\log_9x^{12}y^4[/tex]
by
0 like 0 dislike
[tex]\\ \rm\Rrightarrow log_2z+2log_2x+4log_9y+12log_9x-2log_2y[/tex]

- log_a^b=bloga
- log_a(bc)=log_a b+log_a c

So

[tex]\\ \rm\Rrightarrow log_2z+log_2x^2-log_2y^2+log_9y^4+log_9x^{12}[/tex]

[tex]\\ \rm\Rrightarrow log_2(zx^2)-log_2y^2+log_9(y^4x^{12})[/tex]

[tex]\\ \rm\Rrightarrow log_2\left(\dfrac{zx^2}{y^2}\right)+log_9(y^4x^{12})[/tex]
by
Welcome to AskTheTask.com, where understudies, educators and math devotees can ask and respond to any number related inquiry. Find support and replies to any numerical statement including variable based math, geometry, calculation, analytics, geometry, divisions, settling articulation, improving on articulations from there, the sky is the limit. Find solutions to numerical problems. Help is consistently 100 percent free!

Questions

No related questions found