0 like 0 dislike
HELPPP!!!!

Solve this system of equations using the inverse of a matrix.
-x +y = 8
4x + 3y = 12
x - 7y + z = 15
by

1 Answer

0 like 0 dislike
The Solution of -x +y = 84, x + 3y = 12, x - 7y + z = 15 be [tex]\; \left[\begin{array}{ccc}x\\y\\z\end{array}\right] \; =\left[\begin{array}{ccc}-1.76\\6.24\\60.76\end{array}\right][/tex]

The correct option is (C)

What is inverse of Matrix?

The inverse of matrix is another matrix, which on multiplying with the given matrix gives the multiplicative identity.

Given equation are:

-x +y = 8

4x + 3y = 12

x - 7y + z = 15

So,

[tex]\left[\begin{array}{ccc}-1&1&0\\4&3&0\\1&-7&1\end{array}\right] \;*\; \left[\begin{array}{ccc}x\\y\\z\end{array}\right] \; = \; \left[\begin{array}{ccc}8\\12\\15\end{array}\right][/tex]

then,

[tex]\; \left[\begin{array}{ccc}x\\y\\z\end{array}\right] \; = \; \left[\begin{array}{ccc}-1&1&0\\4&3&0\\1&-7&1\end{array}\right]^{-1} \; \left[\begin{array}{ccc}8\\12\\15\end{array}\right][/tex]

Now, Calculating the inverse of Matrix we have,

[tex]\left[\begin{array}{ccc}-1&1&0\\4&3&0\\1&-7&1\end{array}\right]^{-1} \;[/tex] = [tex]\left[\begin{array}{ccc}-3/7&1/7&0\\4/7&1/7&0\\31/7&6/7&1\end{array}\right][/tex]

so, [tex]\; \left[\begin{array}{ccc}x\\y\\z\end{array}\right] \; = \;\left[\begin{array}{ccc}-3/7&1/7&0\\4/7&1/7&0\\31/7&6/7&1\end{array}\right]\; \left[\begin{array}{ccc}8\\12\\15\end{array}\right][/tex]

[tex]\; \left[\begin{array}{ccc}x\\y\\z\end{array}\right] \; =\left[\begin{array}{ccc}-12/7\\44/7\\425/7\end{array}\right][/tex]

[tex]\; \left[\begin{array}{ccc}x\\y\\z\end{array}\right] \; =\left[\begin{array}{ccc}-1.76\\6.24\\60.76\end{array}\right][/tex]

Hence ,[tex]\; \left[\begin{array}{ccc}x\\y\\z\end{array}\right] \; =\left[\begin{array}{ccc}-1.76\\6.24\\60.76\end{array}\right][/tex]

Learn more about Inverse of Matrix here:

 

by
Welcome to AskTheTask.com, where understudies, educators and math devotees can ask and respond to any number related inquiry. Find support and replies to any numerical statement including variable based math, geometry, calculation, analytics, geometry, divisions, settling articulation, improving on articulations from there, the sky is the limit. Find solutions to numerical problems. Help is consistently 100 percent free!

Questions

No related questions found