0 like 0 dislike
Let O be an angle in quadrant III such that cos 0 = -2/5 Find the exact values of csco and tan 0.​
by

1 Answer

0 like 0 dislike
well, we know that θ is in the III Quadrant, where the sine is negative and the cosine is negative as well, or if you wish, where "x" as well as "y" are both negative, now, the hypotenuse or radius of the circle is just a distance amount, so is never negative, so in the equation of cos(θ) = - (2/5), the negative must be the adjacent side, thus

[tex]cos(\theta)=\cfrac{\stackrel{adjacent}{-2}}{\underset{hypotenuse}{5}}\qquad \textit{let's find the \underline{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{5^2 - (-2)^2}=b\implies \pm\sqrt{25-4}\implies \pm\sqrt{21}=b\implies \stackrel{III~Quadrant}{-\sqrt{21}=b}[/tex]

[tex]\dotfill\\\\ csc(\theta)\implies \cfrac{\stackrel{hypotenuse}{5}}{\underset{opposite}{-\sqrt{21}}}\implies \stackrel{\textit{rationalizing the denominator}}{-\cfrac{5}{\sqrt{21}}\cdot \cfrac{\sqrt{21}}{\sqrt{21}}\implies -\cfrac{5\sqrt{21}}{21}} \\\\\\ tan(\theta)=\cfrac{\stackrel{opposite}{-\sqrt{21}}}{\underset{adjacent}{-2}}\implies tan(\theta)=\cfrac{\sqrt{21}}{2}[/tex]
by
Welcome to AskTheTask.com, where understudies, educators and math devotees can ask and respond to any number related inquiry. Find support and replies to any numerical statement including variable based math, geometry, calculation, analytics, geometry, divisions, settling articulation, improving on articulations from there, the sky is the limit. Find solutions to numerical problems. Help is consistently 100 percent free!

Questions

No related questions found