0 like 0 dislike
Given x varies inversely as y and x = 6 when y = - 4, find y when x = 8 .

0 like 0 dislike
- - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -

$$\blue\textsf{\textbf{\underline{\underline{Question:-}}}}$$

Given that x varies inversely with y, x=6 when y=-4, find y when x=8.

$$\blue\textsf{\textbf{\underline{\underline{Answer and How to Solve:-}}}}$$

If x varies inversely with y, we divide.

So the formula looks as follows:-

$$\bold{x=\displaystyle\frac{k}{y} }$$

where k = constant of proportionality

Plug in the values:-

$$\bold{6=\displaystyle\frac{k}{-4}}$$

Multiply both sides by -4:-

$$\bold{-24=k}$$

Now find y when x=8:-

$$\bold{8=\displaystyle\frac{-24}{y}}$$

Multiply both sides by y:-

$$\bold{8y=-24}$$

Divide by 8 on both sides:-

$$\dashrightarrow\bigstar{\boxed{\boxed{\underline{\bold{y=-3}}}}\dashleftarrow$$

Good luck.

- - - - - - - - - -- - --- - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -
by